Federal Aviation Administration, DOT - (e) For reciprocating engine powered airplanes, means must be provided to prevent jettisoning the fuel in the tanks used for takeoff and landing below the level allowing 45 minutes flight at 75 percent maximum continuous power. However, if there is an auxiliary control independent of the main jettisoning control, the system may be designed to jettison the remaining fuel by means of the auxiliary jettisoning control. - (f) For turbine engine powered airplanes, means must be provided to prevent jettisoning the fuel in the tanks used for takeoff and landing below the level allowing climb from sea level to 10,000 feet and thereafter allowing 45 minutes cruise at a speed for maximum range. However, if there is an auxiliary control independent of the main jettisoning control, the system may be designed to jettison the remaining fuel by means of the auxiliary jettisoning control. - (g) The fuel jettisoning valve must be designed to allow flight personnel to close the valve during any part of the jettisoning operation. - (h) Unless it is shown that using any means (including flaps, slots, and slats) for changing the airflow across or around the wings does not adversely affect fuel jettisoning, there must be a placard, adjacent to the jettisoning control, to warn flight crewmembers against jettisoning fuel while the means that change the airflow are being used. - (i) The fuel jettisoning system must be designed so that any reasonably probable single malfunction in the system will not result in a hazardous condition due to unsymmetrical jettisoning of, or inability to jettison, fuel. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–18, 33 FR 12226, Aug. 30, 1968; Amdt. 25–57, 49 FR 6848, Feb. 23, 1984; Amdt. 25–108, 67 FR 70827, Nov. 26, 2002] #### OIL SYSTEM # § 25.1011 General. (a) Each engine must have an independent oil system that can supply it with an appropriate quantity of oil at a temperature not above that safe for continuous operation. - (b) The usable oil capacity may not be less than the product of the endurance of the airplane under critical operating conditions and the approved maximum allowable oil consumption of the engine under the same conditions, plus a suitable margin to ensure system circulation. Instead of a rational analysis of airplane range for the purpose of computing oil requirements for reciprocating engine powered airplanes, the following fuel/oil ratios may be used: - (1) For airplanes without a reserve oil or oil transfer system, a fuel/oil ratio of 30:1 by volume. - (2) For airplanes with either a reserve oil or oil transfer system, a fuel/oil ratio of 40:1 by volume. - (c) Fuel/oil ratios higher than those prescribed in paragraphs (b)(1) and (2) of this section may be used if substantiated by data on actual engine oil consumption. # § 25.1013 Oil tanks. - (a) *Installation*. Each oil tank installation must meet the requirements of § 25.967. - (b) Expansion space. Oil tank expansion space must be provided as follows: - (1) Each oil tank used with a reciprocating engine must have an expansion space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and each oil tank used with a turbine engine must have an expansion space of not less than 10 percent of the tank capacity. - (2) Each reserve oil tank not directly connected to any engine may have an expansion space of not less than two percent of the tank capacity. - (3) It must be impossible to fill the expansion space inadvertently with the airplane in the normal ground attitude. - (c) Filler connection. Each recessed oil tank filler connection that can retain any appreciable quantity of oil must have a drain that discharges clear of each part of the airplane. In addition, each oil tank filler cap must provide an oil-tight seal. - (d) Vent. Oil tanks must be vented as follows: - (1) Each oil tank must be vented from the top part of the expansion space so that venting is effective under any normal flight condition. ### § 25.1015 - (2) Oil tank vents must be arranged so that condensed water vapor that might freeze and obstruct the line cannot accumulate at any point. - (e) Outlet. There must be means to prevent entrance into the tank itself, or into the tank outlet, of any object that might obstruct the flow of oil through the system. No oil tank outlet may be enclosed by any screen or guard that would reduce the flow of oil below a safe value at any operating temperature. There must be a shutoff valve at the outlet of each oil tank used with a turbine engine, unless the external portion of the oil system (including the oil tank supports) is fireproof. - (f) Flexible oil tank liners. Each flexible oil tank liner must be approved or must be shown to be suitable for the particular application. [Doc. No. 5066, 29 FR 18291, Dec. 24, as amended by Amdt. 25–19, 33 FR 15410, Oct. 17, 1968; Amdt. 25–23, 35 FR 5677, Apr. 8, 1970; Amdt. 25–36, 39 FR 35460, Oct. 1, 1974; Amdt. 25–57, 49 FR 6848, Feb. 23, 1984; Amdt. 25–72, 55 FR 29785, July 20, 1990] ### §25.1015 Oil tank tests. Each oil tank must be designed and installed so that— - (a) It can withstand, without failure, each vibration, inertia, and fluid load that it may be subjected to in operation; and - (b) It meets the provisions of §25.965, except— - (1) The test pressure— - (i) For pressurized tanks used with a turbine engine, may not be less than 5 p.s.i. plus the maximum operating pressure of the tank instead of the pressure specified in §25.965(a); and - (ii) For all other tanks may not be less than 5 p.s.i. instead of the pressure specified in §25.965(a); and - (2) The test fluid must be oil at 250 °F. instead of the fluid specified in \$25.965(c). [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–36, 39 FR 35461, Oct. 1, 1974] ## §25.1017 Oil lines and fittings. (a) Each oil line must meet the requirements of §25.993 and each oil line and fitting in any designated fire zone must meet the requirements of §25.1183. - (b) Breather lines must be arranged so that— - (1) Condensed water vapor that might freeze and obstruct the line cannot accumulate at any point; - (2) The breather discharge does not constitute a fire hazard if foaming occurs or causes emitted oil to strike the pilot's windshield; and - (3) The breather does not discharge into the engine air induction system. #### §25.1019 Oil strainer or filter. - (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of the engine oil flows and which meets the following requirements: - (1) Each oil strainer or filter that has a bypass must be constructed and installed so that oil will flow at the normal rate through the rest of the system with the strainer or filter completely blocked. - (2) The oil strainer or filter must have the capacity (with respect to operating limitations established for the engine) to ensure that engine oil system functioning is not impaired when the oil is contaminated to a degree (with respect to particle size and density) that is greater than that established for the engine under Part 33 of this chapter. - (3) The oil strainer or filter, unless it is installed at an oil tank outlet, must incorporate an indicator that will indicate contamination before it reaches the capacity established in accordance with paragraph (a)(2) of this section. - (4) The bypass of a strainer or filter must be constructed and installed so that the release of collected contaminants is minimized by appropriate location of the bypass to ensure that collected contaminants are not in the bypass flow path. - (5) An oil strainer or filter that has no bypass, except one that is installed at an oil tank outlet, must have a means to connect it to the warning system required in $\S25.1305(c)(7)$. - (b) Each oil strainer or filter in a powerplant installation using reciprocating engines must be constructed and installed so that oil will flow at the normal rate through the rest of the